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Abstract
The present work concerns the study of the convergence properties of the
nonlinear SD transformation. A fast and accurate numerical evaluation of
highly oscillatory semi-infinite integrals involved in the analytic expressions
of molecular integrals over Slater-type orbitals is obtained using the SD

transformation. These semi-infinite integrals involve spherical and reduced
Bessel functions. The convergence properties are analysed and they show
that the approximations obtained using the SD approach converge to the exact
values of the semi-infinite integrals without any constraint. The numerical
tables show that the SD method gives unprecedented accuracy with speed-up
by a factor 2 over the HD method and a factor 10 over the D transformation.
This illustrates the superiority of this new approach.

PACS numbers: 02.60.Jh, 02.70.Ns, 02.30.Gp

1. Introduction

The present work concerns the study of the convergence properties of the nonlinear SD

transformation and its application for a fast and accurate numerical evaluation of semi-infinite
highly oscillatory integrals. This method is based on the nonlinear D and D transformations
[1–3] and on the HD and HD approaches [4, 5]. The D and D transformations are efficient
in evaluating semi-infinite integrals whose integrands satisfy linear differential equations with
coefficients having asymptotic expansions in inverse powers of their argument x as x → +∞.
The application of D and D depends greatly on the order of the differential equation that the
integrand satisfies; when this order is large the calculations become very difficult. The main
idea of the HD and HD methods which are based on the Hankel transform [2], is to reduce the
order of these differential equations to 2 for a certain class of integrands involving spherical
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and reduced Bessel functions. This result led to a great simplification in the application of the
D and D transformations.

The main idea of the SD method is to replace the spherical Bessel function in the
integrands by the sine function using useful properties that relate these two functions [6]. It
is well known that numerical integration of oscillatory integrands is difficult, especially when
the oscillatory part is a spherical Bessel function and not a simple trigonometric function
[7, 8]. Useful properties of the sine function, spherical and reduced Bessel functions and
Poincaré series allowed the use of Cramer’s rule in the calculations [6, 9]. The convergence

properties of this new approach are now analysed and they show that the approximation SD
(2)

n

converges without any constraint to the exact value of the semi-infinite integral.
A fast and accurate numerical evaluation of highly oscillatory semi-infinite integrals

involved in the analytic expressions of three-centre molecular integrals over Slater-type orbitals
is obtained using the SD transformation. These integrals are the rate determining step of
ab initio and density functional theory (DFT) molecular structure calculations and they
contribute to the total energy of the molecule. The ab initio calculations using the LCAO-MO
approach [10], where molecular orbitals are built from a linear combination of atomic orbitals,
are strongly dependent on the choice of the basis functions for the reliability of the electronic
distributions they provide [11]. A good atomic orbital basis should satisfy two pragmatic
conditions for analytical solutions of the appropriate Schrödinger equation, namely the cusp
at the origin [12] and exponential decay at infinity [13, 14].

Various studies have focused on the use of B functions that have been proposed by Shavitt
[15] and introduced by Filter and Steinborn [16, 17]. These functions have some remarkable
mathematical properties applicable to multicentre integral problems. Addition theorems for
B functions that have been derived in [18] have simple structures. The B functions have
extremely compact convolution integrals [19, 20] and their Fourier transform is of exceptional
simplicity [21, 22]. Note also that Slater-type functions [23, 24] can be expressed as finite
linear combinations of B functions [17].

The B functions are well adapted to the Fourier transformation method introduced by
Bonham et al [25] and generalized by Steinborn et al [26, 27]. This Fourier transformation
method, which is one of the most successful approaches for the evaluation of multicentre
integrals, allowed analytic expressions for molecular integrals over B functions to be developed.
These analytic expressions turned out to be extremely difficult to evaluate because of the
presence of two-dimensional integral representations. The integrands of the inner semi-
infinite integrals are highly oscillatory functions due to the presence of spherical Bessel
functions jλ(vx), in particular for large values of λ and v.

These semi-infinite integrals can be transformed into infinite series of integrals. These
infinite series are alternating and slowly convergent and this is why their use is prohibitively
long for a sufficient accuracy. In previous work [28, 29], we demonstrated that the use of
Gauss–Laguerre quadrature is inefficient in evaluating this kind of oscillatory integrals since
in certain regions corresponding to s close to 0 or 1, where s is one of the arguments of the
integrands, the asymptotic behaviour of the integrands cannot be represented by functions
of the form e−αxg(x) where g(x) is not a highly oscillatory function. We also note that the
regions close to s = 0 or 1 carry a very small weight because of their expressions sn2(1 − s)n1

in the integrals [30–33].
The epsilon algorithm of Wynn [34] or Levin’s u transform [35], accelerate the

convergence of infinite series but in the case of the semi-infinite integrals involved in the
analytic expressions of molecular integrals, the calculation times for a sufficient accuracy
are still long especially for large values of λ and v since the zeros of jλ(vx) become closer
[28, 29, 36]. Therefore new numerical integration techniques are required.
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2. General definitions and properties

The spherical Bessel function jl(x) is defined by [37, 38]

jl(x) = (−1)lxl

(
d

x dx

)l

j0(x) = (−1)lxl

(
d

x dx

)l ( sin(x)

x

)
. (1)

jl(x) and its first derivative j ′
l (x) satisfy the recurrence relations [37, 38],{

xjl−1(x) + xjl+1(x) = (2l + 1)jl(x)

ljl−1(x) − (l + 1)jl+1(x) = (2l + 1)j ′
l (x).

(2)

For the following, we write jn

l+ 1
2

with n = 1, 2, . . . for the successive positive zeros of

jl(x). j 0
l+ 1

2
are assumed to be 0.

The reduced Bessel function k̂n+ 1
2
(z) is defined by [15, 16]

k̂n+ 1
2
(z) = zn e−z

n∑
j=0

(n + j)!

j !(n − j)!

1

(2z)j
. (3)

The reduced Bessel functions satisfy the recurrence relation [15],

k̂n+ 1
2
(z) = (2n − 1) k̂n− 1

2
(z) + z2k̂(n−1)− 1

2
(z). (4)

A useful property satisfied by k̂n+ 1
2
(z) is given by [39](

d

z dz

)m k̂n+ 1
2
(z)

z2n+1
=
(

d

z dz

)m
[√

π

2

Kn+ 1
2
(z)

zn+ 1
2

]
= (−1)m

k̂n+m+ 1
2
(z)

z2(n+m)+1
(5)

where Kn+ 1
2

stands for the modified Bessel function of the second kind [39].

For the following, we define A(γ ) for certain γ , as the set of infinitely differentiable
functions p(x), which have asymptotic expansions in inverse powers of x as x → +∞, of the
form

p(x) ∼ xγ
(
a0 +

a1

x
+

a2

x2
+ · · ·

)
(6)

and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in (6) term by term.

We denote by Ã(γ ), for some γ , the set of functions p(x) such that p(x) ∈ A(γ ) and
limx→+∞ x−γ p(x) �= 0. Thus, p ∈ Ã(γ ) has an asymptotic expansion in inverse powers of x
as x → +∞ of the form given by (6) with a0 �= 0.

We define the functional α0(p) by α0(p) = limx→+∞ x−γ p(x).

3. The nonlinear SD transformation

Let us consider a function of the form

f (x) = g(x)jλ(x) (7)

where the function g(x) is of the form g(x) = h(x) eφ(x).
The semi-infinite oscillatory integral

∫ +∞
0 f (x) dx is difficult to evaluate because of the

presence of the spherical Bessel function in the integrand. In previous work [4, 5], we showed
that we can obtain an efficient and rapid numerical evaluation of the semi-infinite integrals
of the form given by (7) with the help of the nonlinear HD transformation. This method
requires the computation of the successive positive zeros of spherical Bessel functions and
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the computation of a method to solve linear systems. This requires a considerable amount of
(CPU) time in particular for large orders of spherical Bessel functions.

The principal idea of the SD transformation consists in replacing the spherical Bessel
function in the integrands by the sine function using equation (1). The principal difficulty
related to the strong oscillations of the spherical Bessel functions has been solved. As it
is well known, the numerical integration of oscillatory integrands is very difficult when the
oscillatory part is a spherical Bessel function and not a simple trigonometric function. The
useful properties of the sine function, Bessel functions and Poincaré series, helped to develop
the SD transformation where we can use Cramer’s rule for calculating good approximations
of semi-infinite highly oscillatory integrals.

Now we shall state two theorems which are fully demonstrated in [6].

Theorem 1. Let f (x) be a function of the form

f (x) = g(x)jλ(x) (8)

where g(x) is in C2([0, +∞[), which is the set of twice continuously differentiable functions
defined on the half-open interval [0, +∞[. If the function g(x) is of the form g(x) = h(x) eφ(x),
where h(x) ∈ Ã(γ ) for some γ and φ(x) ∈ Ã(k) with k > 0 and if for all l = 0, 1, . . . , λ − 1,

lim
x→0

xl−λ+1

(
d

x dx

)l

(xλ−1g(x))jλ−1−l(x) = 0

then f (x) is integrable on [0, +∞[ and∫ +∞

0
f (x) dx =

∫ +∞

0

[(
d

x dx

)λ

(xλ−1g(x))

]
sin(x) dx. (9)

Theorem 2. If f (x) is a function of the form given by (8) and satisfying all the conditions of
theorem 1, then a good approximation of

∫ +∞
0 f (x) dx is given by

SD
(2)

n =
∫ xl

0
G(x) sin(x) dx + (−1)l+1G(xl)x

2
l

n−1∑
i=0

β̄1,i

xi
l

l = 0, 1, . . . , n (10)

where xl = (l + 1)π for l = 0, 1, . . . . SD
(2)

n and the β̄1,i are the (n+ 1) unknowns of the linear
system. The function G(x) is given by

G(x) =
(

d

x dx

)λ

(xλ−1g(x)). (11)

Following Levin [35], we can use Cramer’s rule for calculating the unknown SD
(2)

n of

the above linear system, since the zeros of sin(x) are equidistant. The approximation SD
(2)

n is
given by

SD
(2,j)

n =
∑n

i=0

(
n

i

)
(1 + i + j)n−1F(xi+j )

/[
x2

i+jG(xi+j )
]

∑n
i=0

(
n

i

)
(1 + i + j)n−1

/[
x2

i+jG(xi+j )
] (12)

where F(x) = ∫ x

0 G(t) sin(t) dt .

Now, let us consider the two-dimensional integral representations denoted by Ĩ and K̃
given by [6, 42]

Ĩ =
∫ 1

s=0
sn2(1 − s)n1Y

µ
λ (θ�v, ϕ�v)

[∫ +∞

x=0
xnx

k̂ν[R2γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx

]
ds (13)
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where n1, n2, λ, nx and nγ are positive integers, µ is an integer, ν is of the form ν = n + 1
2

where n is a positive integer, R2 and v are positive real numbers and

[γ (s, x)]2 = (1 − s)ζ 2
1 + sζ 2

2 + s(1 − s)x2

where ζ1 and ζ2 are positive real numbers. And

K̃ =
∫ 1

s=0
sn3(1 − s)n4Y

µ
λ (θ�v, ϕ�v)

∫ +∞

x=0

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx ds (14)

where n3, n4, λ, nx and nγ are positive integers, µ is an integer, ν is of the form ν = n + 1
2

where n is a positive integer, R34 and v are positive real numbers and

[γ (s, x)]2 = (1 − s)ζ 2
3 + sζ 2

4 + s(1 − s)x2

where ζs, ζ3 and ζ4 are positive real numbers.
The above two-dimensional integrals occur in the analytic expressions of three-centre

nuclear attraction integrals [6] and three-centre two-electron Coulomb and hybrid integrals
[42] over B functions. These analytic expressions are obtained using the Fourier transform
method [26, 27]. The numerical evaluation of the above integrals presents severe numerical
and computation difficulties because of the presence of the semi-infinite integrals which will
be referred to as Ĩ(s) and K̃(s), whose integrands are highly oscillatory functions due to the
presence of the spherical Bessel function in particular for large values of λ and v since the
zeros of this function become closer and then the oscillations become strong. Note also that in
the regions where s is close to 0 or 1, the oscillations of the integrands become strong. Indeed,
when we make the substitution s = 0 or 1, the term γ (s, x) becomes a constant and hence the
exponential decreasing part k̂ν of the integrands becomes a constant and the integrands will
be reduced to the term xnxjλ(vx). Thus the rapid oscillations of jλ(vx) cannot be damped and
suppressed by the exponential decreasing part.

In previous work [28, 36], we showed that the integrand of Ĩ(s) which will be referred to
as fa(x) and the integrand of K̃(s) which will be referred to as fk(x), satisfy fourth-order linear
differential equations and all the conditions to apply the nonlinear D and D transformations

are satisfied. The approximations D
(4)

n of Ĩ(s) and K̃(s) using D are given by [28, 36]

D
(4)

n =
∫ xl

0
f (t) dt +

3∑
j=1

f (j)(xl)x
j+1
l

n−1∑
i=0

β̄j,i

xi
l

l = 0, 1, . . . , 3n (15)

where D
(4)

n and β̄j,i for j = 1, 2, 3, i = 0, 1, . . . , n − 1 are the (3n + 1) unknowns. The
xl, l = 0, 1, . . . are the leading positive zeros of f (x) where f (x) stands for fa(x) when
evaluating Ĩ(s) and for fk(x) when evaluating K̃(s).

As it can be seen from (15), the application of D required the calculation of the successive
derivatives and the successive positive zeros of the integrands. The accuracy obtained using this
method was satisfactory but progress is still possible. By using the HD and HD methods, we
obtained second-order linear differential equations satisfied by fa(x) and fk(x). This result led
to great simplifications in the calculations. The numerical results obtained using HD showed

the high accuracy and the substantial gain in the calculation times. The approximationsHD
(2)

n

of Ĩ(s) and K̃(s) are given by [4, 5]

HD
(2)

n =
∫ xl

0
f (t) dt + g(xl)j

′
λ(vxl)x

2
l

n−1∑
i=0

β̄1,i

xi
l

l = 0, 1, . . . , n (16)

where f (x) denotes fa(x) when dealing with Ĩ(s) and fk(x) when dealing with K̃(s). The
function g(x) is given by

g(x) = f (x)

jλ(vx)
.
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The HD
(2)

n and β̄1,i , i = 0, 1, . . . , n − 1 are the (n + 1) unknowns of the above linear
system. xl = j l+1

λ,v for l = 0, 1, . . . , where j 0
λ,v is assumed to be zero and jn

λ,v = jn

λ+ 1
2

/
v, n= 1, 2, . . . which are the successive zeros of jλ(vx).

As it can be seen from the above equation, the application of the HD method required the
calculation of the successive positive zeros of spherical Bessel functions and the computation
of a method to solve linear systems.

In [6, 42], we showed that the integrands fa(x) and fk(x) satisfy all the conditions of
theorems 1 and 2. Good approximations of Ĩ(s) and K̃(s) are obtained using equation (12)
where it is not necessary to calculate the successive derivatives and the successive positive
zeros of the integrands and the successive positive zeros of spherical Bessel functions. The
accuracy and the gain in the calculation times obtained using the SD approach are remarkable
[6, 42].

4. Convergence properties

Let us consider a function f (x) integrable on [0, +∞[ satisfying a differential equation of
order m of the form required to apply the nonlinear D transformation. The approximation
D(m)

n of S = ∫ +∞
0 f (t) dt satisfies the linear system of order (mn + 1) given by [1]

D(m)
n =

∫ xl

0
f (t) dt +

m−1∑
k=0

xk+1
l f (k)(xl)

n−1∑
i=0

β̄k,i

xi
l

l = 0, 1, . . . ,mn (17)

where D(m)
n and β̄k,i for k = 0, 1, . . . ,m − 1, i = 0, 1, . . . , n − 1 are the (nm + 1) unknowns.

The xl, l = 0, 1, . . . are chosen to satisfy 0 < x0 < x1 < · · · and liml→+∞ xl = +∞.
Let M be the matrix of the above linear system. The first column of the matrix M is the

vector (1, 1, . . . , 1)T , where T denotes transpose. Let (γ0, γ1, . . . , γmn) be the first row of the
matrix M−1 which stands for the inverse of the matrix M.

Using the fact that M−1M = I where I stands for the matrix identity, it follows that∑mn
l=0 γl = 1 and therefore

mn∑
l=0

|γl| � 1.

Now, we shall state two corollaries fully demonstrated by Sidi [2, 43].

Corollary 1 ([2, 43]).

∣∣S − D(m)
n

∣∣ �
(

mn∑
l=0

|γl|
)

o(n−j ) ∀j > 0 as n → +∞.

Corollary 2 ([2, 43]). If
∑mn

l=0 |γl| � L < ∞, then∣∣S − D(m)
n

∣∣ = o(n−j ) ∀j > 0 as n → +∞.

Now, let us consider the linear system (10) and let K be the matrix of this system and
(δ0, δ1, . . . , δn) the first row of the matrix K−1. It is clear that

∑n
l=0 δl = 1 and therefore

n∑
l=0

|δl| � 1.
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From the fact that (δ0, δ1, . . . , δn) is the first row of the matrix K−1, it follows that

SD
(2)

n =
n∑

i=0

δiF (xi) (18)

where F(xi) = ∫ xi

0 G(x) sin(x) dx.
Using equations (12) and (18), one can easily obtain an expression for δi for i =

0, 1, . . . , n, which is given by

δi =
(
n

i

)
(1 + i)n−1

/[
x2

i G(xi)
]

∑n
j=0

(
n

j

)
(1 + j)n−1

/[
x2

j G(xj )
] . (19)

Now let us consider the integrand fa(x) of the semi-infinite integral Ĩ(s). The
corresponding functions g(x) and G(x) are given by

g(x) = xnx
k̂ν[R2γ (s, x)]

[γ (s, x)]nγ
and G(x) =

(
d

x dx

)λ

(xλ−1g(x)).

Using equation (5), the Leibnitz formula, and the fact that d
dx

= dz
dx

d
dz

, we obtain in the
case where nγ < 2ν

G(x) =
λ∑

l=0

λ−l∑
k=0

(
λ − l

k

)(
λ

l

)
(nx + λ − 1)!!

(nx + λ − 1 − 2l))!!
xnx+λ−1−2l

× (−1)λ−l−k (2ν − nγ )!!

(2ν − nγ − 2k)!!
sk(1 − s)k

k̂ν+λ−l−k[R2γ (s, x)]

[γ (s, x)]nγ +2k
(20)

and for nγ = 2ν, we obtain

G(x) =
λ∑

l=0

(−1)λ−l

(
λ

l

)
(nx + λ − 1)!!

(nx + λ − 1 − 2l))!!
xnx+λ−1−2lsλ−l (1 − s)λ−l k̂ν+λ−l[R2γ (s, x)]

[γ (s, x)]2(ν+λ−l)
.

(21)

By using the above equations with equation (3) and the fact that xi for i = 0, 1, . . . are
positive real numbers, one can easily show from equation (19) that 1

δi
> 0 and then δi > 0 for

all i. Consequently,

n∑
i=0

|δi| =
n∑

i=0

δi = 1.

Corollary 2 becomes

Corollary 3.

∣∣Ĩ(s) − SD
(2)

n

∣∣ = o(n−j ) ∀j > 0 as n → +∞.
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In the case of three-centre two-electron Coulomb and hybrid integrals, the function g(x)

which occurs in the integrand fk(x) of the semi-infinite integrals K̃(s), is given by

g(x) = [
ζ 2
s + x2]−nk

xnx
k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx).

With the help of the Leibnitz formulae, one can easily show that the corresponding
function G(x) is given by

G(x) =
λ∑

i=0

i∑
j=0

(
l

i

)(
i

j

)
(nx + λ − 1)!!

(nx + λ − 1 − 2i)!!
xnx+λ−1−2i

× M(nk, i − j)
[
ζ 2
s + x2

]−nk−i+j

(
d

x dx

)λ−i
[

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

]
(22)

where

M(nk, i − j) = (−2)i−j nk(nk + 1) . . . (nk + i − j − 1).

With the help of equation (5) and the fact that d
dx

= dz
dx

d
dz

, one can easily show that if
nγ = 2ν then for j ∈ N(

d

x dx

)j
[

k̂ν[R34γ (s, x)]

[γ (s, x)]2ν

]
= (−1)j sj (1 − s)j

k̂ν+j [R34γ (s, x)]

[γ (s, x)]2(ν+j)
(23)

and for nγ < 2ν, we obtain(
d

x dx

)j
[

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

]
=

j∑
i=0

(
j

i

)
(−1)j−i (2ν − nγ )!!

(2ν − nγ − 2i)!!

× si(1 − s)i
k̂ν+j−i [R34γ (s, x)]

[γ (s, x)]nγ +2i
. (24)

Using the above arguments, one can easily show that the δi > 0 for all i and consequently
the convergence properties of the SD method are without any constraint when evaluating
semi-infinite integrals involved in three-centre molecular integrals. From the numerical point
of view, the situation in which δi > 0 corresponds to the most ideal one.

5. Numerical evaluation and discussion

The semi-infinite oscillatory integrals Ĩ(s) and K̃(s) are given by

Ĩ(s) =
∫ +∞

0
xnx

k̂ν[R2γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx (25)

=
+∞∑
n=0

∫ jn+1
λ,v /v

jn
λ,v

xnx
k̂ν[R2γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx (26)

K̃(s) =
∫ +∞

x=0

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx (27)

=
+∞∑
n=0

∫ jn+1
λ,v

jn
λ,v

[
ζ 2
s + x2

]−nk
xnx

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx (28)
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where j 0
λ,v is assumed to be zero and jn

λ,v = jn

λ+ 1
2

/
v, n = 1, 2, . . . which are the successive

zeros of jλ(vx).
In [6, 42], we showed by using the SD method that the semi-infinite integrals Ĩ(s) and

K̃(s) can be rewritten as

Ĩ(s) = 1

vλ+1

∫ +∞

0

[(
d

x dx

)λ
(

xnx+λ−1 k̂ν[R2γ (s, x)]

[γ (s, x)]nγ

)]
sin(vx) dx (29)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π
v

nπ
v

[(
d

x dx

)λ
(

xnx+λ−1 k̂ν[R2γ (s, x)]

[γ (s, x)]nγ

)]
sin(vx) dx. (30)

K̃(s) = 1

vλ+1

∫ +∞

x=0

((
d

x dx

)λ
[

xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

])
sin(vx) dx (31)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π

v

nπ
v

((
d

x dx

)λ
[

xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

])
sin(vx) dx.

(32)

The use of equations (29) and (31) for the numerical evaluation of Ĩ(s) is more
advantageous than the use of equations (25) and (27) because of the fact that the numerical
integration of oscillatory integrands is very difficult when the oscillatory part is a spherical
Bessel function.

The values with 15 correct decimals of the semi-infinite integrals Ĩ(s) and K̃(s) can be
obtained by using the infinite series given by (26) or (30) and (28) or (32) which we sum until
N = max. It is clear that by using the infinite series involving the sine function (30) and
(32), we need less terms to obtain the pre-determined accuracy. The finite integrals involved
in equations (30) and (32) are evaluated using Gauss–Legendre quadrature of order 16.

The finite integrals involved in equations (12) and (16) are transformed into finite sums,

∫ xn

0
f (x) dx =

n−1∑
l=0

∫ xl+1

xl

f (x) dx

and each term of the above finite sum is evaluated using Gauss–Legendre quadrature of
order 16.

The numerical tables contain the semi-infinite integrals Ĩ(s) and K̃(s), which occur in
three-centre nuclear attraction, three-centre two-electron Coulomb and hybrid integrals over
B functions, evaluated using the methods described below.

Tables 1, 4, 7 and 10 contain the values with 15 correct decimals of the semi-infinite
integrals Ĩ(s) and K̃(s) obtained using the infinite series (30) and (32) which we sum until
N = max. These values are obtained for s = 0.01 and s = 0.99 for Ĩ(s) and for s = 0.001
and s = 0.999 for K̃(s). In these regions, the oscillations of the integrands become strong.

Tables 2, 5, 8 and 11, contain values of the above semi-infinite integrals obtained using
the HD method (16).

Tables 3, 6, 9 and 12 contain values of the above semi-infinite integrals obtained using
the SD approach (12).
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Table 1. Values of Ĩ(s) obtained with 15 correct decimals by using the infinite series (30);
s = 0.01, v = |(1 − s)R2 − R1|.
ν nγ nx λ R1 ζ1 R2 ζ2 max Ĩ(s)

5/2 5 0 0 6.31 1.0 2.0 1.0 156 0.638 243 453 884 445D+00
9/2 9 2 1 8.50 2.0 3.5 2.0 156 0.248 336 723 989 985D−03
9/2 9 2 2 9.00 2.0 3.5 1.0 206 0.183 269 571 025 634D−02

13/2 13 3 3 7.50 2.0 3.5 1.0 134 0.181 139 626 222 771D−01

Table 2. Evaluation of Ĩ(s) using HD
(2)

n (16); s = 0.01, v = |(1 − s)R2 − R1|. Time T is in
milliseconds.

ν nγ nx λ R1 ζ1 R2 ζ2 n Ĩ(s) Error T

5/2 5 0 0 6.31 1.0 2.0 1.00 9 0.638 243 454 0D+00 0.73D−10 0.23
9/2 9 2 1 8.50 2.0 3.5 2.00 7 0.248 336 795 0D−03 0.71D−10 0.32
9/2 7 2 2 9.00 2.0 3.5 1.00 6 0.183 269 526 8D−02 0.44D−09 0.41

13/2 13 3 3 7.50 2.0 3.5 1.00 7 0.181 139 575 7D−01 0.50D−08 0.50

Table 3. Evaluation of Ĩ(s) using SD
(2,5)

n (12); s = 0.01, v = |(1 − s)R2 − R1|. Time T is in
milliseconds.

ν nγ nx λ R1 ζ1 R2 ζ2 n Ĩ(s) Error T

5/2 5 0 0 6.31 1.0 2.0 1.00 9 0.638 243 453 8D+00 0.74D−10 0.10
9/2 9 2 1 8.50 2.0 3.5 2.00 7 0.248 336 714 9D−03 0.91D−11 0.29
9/2 7 2 2 9.00 2.0 3.5 1.00 6 0.183 269 571 6D−02 0.57D−11 0.39

13/2 13 3 3 7.50 2.0 3.5 1.00 7 0.181 139 626 1D−01 0.81D−11 0.45

Table 4. Values of Ĩ(s) obtained with 15 correct decimals by using the infinite series (30);
s = 0.99, v = |(1 − s)R2 − R1|.
ν nγ nx λ R1 ζ1 R2 ζ2 max Ĩ(s)

5/2 5 0 0 4.50 2.0 1.5 1.0 202 0.701 581 269 512 310D+00
9/2 9 1 1 6.00 2.0 3.5 1.0 145 0.183 138 910 224 197D+01
9/2 9 2 1 6.00 2.0 3.0 1.0 195 0.476 698 176 142 352D+00

13/2 11 3 3 6.50 2.5 3.5 2.0 239 0.993 192 007 213 570D−02

Table 5. Evaluation of Ĩ(s) using HD
(2)

n (16); s = 0.99, v = |(1 − s)R2 − R1|. Time T is in
milliseconds.

ν nγ nx λ R1 ζ1 R2 ζ2 n Ĩ(s) Error T

5/2 5 0 0 4.50 2.0 1.5 1.00 6 0.701 581 274 9D+00 0.54D−08 0.18
9/2 9 1 1 6.00 2.0 3.5 1.00 6 0.183 138 917 3D+01 0.71D−07 0.31
9/2 9 2 1 6.00 2.0 3.0 1.00 8 0.476 698 156 7D+00 0.19D−07 0.58

13/2 11 3 3 6.50 2.5 3.5 2.00 9 0.993 191 951 0D−02 0.59D−09 0.62

Table 6. Evaluation of Ĩ(s) using SD
(2,5)

n (12); s = 0.99, v = |(1 − s)R2 − R1|. Time T is in
milliseconds.

ν nγ nx λ R1 ζ1 R2 ζ2 n Ĩ(s) Error T

5/2 5 0 0 4.50 2.0 1.5 1.00 6 0.701 581 269 5D+00 0.13D−10 0.11
9/2 9 1 1 6.00 2.0 3.5 1.00 6 0.183 138 910 2D+01 0.25D−10 0.32
9/2 9 2 1 6.00 2.0 3.0 1.00 8 0.476 698 176 1D+00 0.31D−10 0.42

13/2 11 3 3 6.50 2.5 3.5 2.00 9 0.993 192 001 2D−02 0.87D−10 0.51
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Table 7. Values of the semi-infinite integral K̃(s) obtained with 15 correct decimals using the
infinite series (32); s = 0.001, nx = λ, nγ = 2ν, v = |(1 − s)(R3 − R4) − R4| and ζs = ζ1 + ζ2.

ν nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 max K̃(s)

5/2 2 0 7.5 1.5 1.5 1.0 1.0 1.0 125 0.126 414 190 755 008D−02
9/2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 106 0.146 157 629 412 064D+00

11/2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 135 0.861 150 036 617 796D+00
15/2 3 4 3.5 3.0 1.0 1.0 1.0 1.5 81 0.204 664 014 657 073D+01

Table 8. Evaluation of the semi-infinite integral K̃(s) using the HD̄ method (16) of order 7

(HD
(2)

7 ); s = 0.001, nx = λ, nγ = 2ν, v = |(1 − s)(R3 − R4) − R4| and ζs = ζ1 + ζ2.

ν nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 HD̄
(2)
7 Error

5/2 2 0 7.5 1.5 1.5 1.0 1.0 1.0 0.126 414 190 8D−02 0.17D−12
9/2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 0.146 157 629 4D+00 0.19D−10

11/2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 0.861 150 036 6D+00 0.12D−10
15/2 3 4 3.5 3.0 1.0 1.0 1.0 1.5 0.204 664 014 7D+01 0.29D−10

Table 9. Evaluation of the semi-infinite integral K̃(s) using the SD̄ method (12) of order 5
(SD̄

(2,5)
5 ); s = 0.001, nx = λ, nγ = 2ν, v = |(1 − s)(R3 − R4) − R4| and ζs = ζ1 + ζ2.

ν nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 SD̄
(2,5)

5 Error

5/2 2 0 7.5 1.5 1.5 1.0 1.0 1.0 0.126 414 190 8D−02 0.26D−13
9/2 3 2 4.5 4.0 1.0 1.0 1.0 1.0 0.146 157 629 4D+00 0.46D−12

11/2 2 3 3.5 3.0 0.5 0.5 1.5 1.5 0.861 150 036 6D+00 0.33D−12
15/2 3 4 3.5 3.0 1.0 1.0 1.0 1.5 0.204 664 014 7D+01 0.89D−13

Table 10. Values of the semi-infinite integral K̃(s) obtained with 15 correct decimals using the
infinite series (32); s = 0.999, nx = λ, nγ = 2ν, v = |(1 − s)(R3 − R4) − R4| and ζs = ζ1 + ζ2.

ν nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 max K̃(s)

5/2 2 0 2.5 2.0 1.5 1.5 1.0 1.0 155 0.276 599 387 190 865D−01
7/2 2 1 4.0 3.0 1.5 0.5 1.0 2.5 162 0.136 665 163 437 581D+00

13/2 3 4 3.0 2.5 1.0 1.0 2.0 1.5 103 0.826 191 642 949 067D−02
15/2 3 4 4.5 3.5 1.0 0.5 2.0 2.5 120 0.288 150 089 225 324D−01

Table 11. Evaluation of the semi-infinite integral K̃(s) using the HD̄ method (16) of order 7

(HD
(2)

7 ); s = 0.999, nx = λ, nγ = 2ν, v = |(1 − s)(R3 − R4) − R4| and ζs = ζ1 + ζ2.

ν nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 HD̄
(2)
7 Error

5/2 2 0 2.5 2.0 1.5 1.5 1.0 1.0 0.276 599 387 2D−01 0.11D−11
7/2 2 1 4.0 3.0 1.5 0.5 1.0 2.5 0.136 665 163 5D+00 0.20D−10

13/2 3 4 3.0 2.5 1.0 1.0 2.0 1.5 0.826 191 642 9D−02 0.59D−12
15/2 3 4 4.5 3.5 1.0 0.5 2.0 2.5 0.288 150 089 2D−01 0.19D−11

We listed the calculation times in tables 2, 3, 5 and 6 to show the rapidity of the nonlinear
transformations in evaluating highly oscillatory integrals. As it can be seen from these tables,
the calculation times are considerably reduced by using the SD method which leads to a better
accuracy.
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Table 12. Evaluation of the semi-infinite integral K̃(s) using the SD̄ method (12) of order 5

(SD
(2,5)

5 ); s = 0.999, nx = λ, nγ = 2ν, v = |(1 − s)(R3 − R4) − R4| and ζs = ζ1 + ζ2.

ν nk λ R3 R4 ζ1 ζ2 ζ3 ζ4 SD̄
(2,5)

5 Error

5/2 2 0 2.5 2.0 1.5 1.5 1.0 1.0 0.276 599 387 2D−01 0.29D−13
7/2 2 1 4.0 3.0 1.5 0.5 1.0 2.5 0.136 665 163 4D+00 0.74D−12

13/2 3 4 3.0 2.5 1.0 1.0 2.0 1.5 0.826 191 642 9D−02 0.47D−14
15/2 3 4 4.5 3.5 1.0 0.5 2.0 2.5 0.288 150 089 2D−01 0.30D−13

Extensive numerical results can be found in [6, 42] where the corresponding complete
three-centre nuclear attraction, three-centre two-electron Coulomb and hybrid integrals are
evaluated using the above nonlinear transformations for atomic orbitals.

6. Conclusion

Analytic expressions can be obtained for molecular integrals by choosing the B functions as
a basis set of atomic orbitals and applying the Fourier transform method. These analytical
expressions involve two- or three-dimensional integral representations which present severe
numerical and computation difficulties because of the presence of highly oscillatory semi-
infinite integrals where the oscillatory part is a spherical Bessel function and not a simple
trigonometric function. These integrals are shown to be suitable for the application of
the nonlinear D and D transformations. The application of these two methods requires
the calculation of the successive derivatives of the integrands and its successive zeros for
D. Great simplifications were obtained with the help of the HD and HD approaches.
The calculation of the successive derivatives of the integrands is avoided and the orders of
the linear systems to solve are considerably reduced for the semi-infinite integrals involved
in the analytic expressions of molecular integrals. The application of the HD method requires
the computation of the successive zeros of the spherical Bessel function and the computation
of the method to solve linear systems.

The SD approach which is based on the above methods and on some useful properties
of the sine function, spherical and reduced Bessel functions and Poincaré series led to
a remarkable simplification on the numerical evaluation of highly semi-infinite integrals
in particular those involved in molecular integrals over Slater-type orbitals. The gain in
the calculation times and the high accuracy obtained for molecular integrals illustrate the
superiority of this new approach. Obviously, this great increase in rapidity of the new method
is a key issue. In the molecular context, many millions of such integrals are required for close
range terms, therefore rapidity is the principal criterion when the precision has been reached.
The progress represented by the SD approach is another useful step in developing software
for evaluating molecular integrals over Slater-type orbitals.

The convergence properties of the SD method show that SD
(2)

n converges without any
constraint to the exact value of the semi-infinite integrals of interest.
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